Cross-modal plasticity in Cuban visually-impaired child cochlear implant candidates: topography of somatosensory evoked potentials.
نویسندگان
چکیده
INTRODUCTION Studies of neuroplasticity have shown that the brain's neural networks change in the absence of sensory input such as hearing or vision. However, little is known about what happens when both sensory modalities are lost (deaf-blindness). Hence, this study of cortical reorganization in visually-impaired child cochlear implant (CI) candidates. OBJECTIVE Assess cross-modal plasticity, specifically cortical reorganization for tactile representation in visually-impaired child CI candidates, through study of topography of somatosensory evoked potentials (SEP). METHODS From April through September 2005, SEP from median and tibial nerve electrical stimulation were studied in 12 visually-impaired child CI candidates aged 3-15 years and 23 healthy controls. Following placement of 19 recording electrodes using the International 10-20 System , SEP were recorded and then processed. Topographic maps were obtained for SEP N20 (median nerve) and SEP P40 (tibial nerve), permitting assessment of cortical reorganization by comparing visually-impaired, deaf children's maps with those of healthy children by means of visual inspection and statistical comparison using a permutation test. RESULTS SEP N20 topography was significantly more extensive in visually-impaired child CI candidates than in healthy children. An asymmetrical pattern occurred from the expansion of hand tactile activation into the temporal and occipital regions in the left hemisphere on right median nerve stimulation. This did not occur for SEP P40 on tibial nerve stimulation (right and left). Magnitude of expanded SEP N20 response was related to severity of visual impairment and longer duration of dual sensory loss. CONCLUSIONS Changes in SEP N20 topography are evidence of cross-modal plasticity in visually-impaired child CI candidates, appearing to result from a complex interaction between severity of visual impairment and duration of multisensory deprivation.
منابع مشابه
Cross-modal plasticity in deaf child cochlear implant candidates assessed using visual and somatosensory evoked potentials.
INTRODUCTION Cross-modal plasticity has been extensively studied in deaf adults with neuroimaging studies, yielding valuable results. A recent study in our laboratory with deaf-blind children found evidence of cross-modal plasticity, revealed in over-representation of median nerve somatosensory evoked potentials (SEP N20) in left hemisphere parietal, temporal and occipital regions. This finding...
متن کاملVisual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users.
Cross-modal reorganization in the auditory cortex has been reported in deaf individuals. However, it is not well understood whether this compensatory reorganization induced by auditory deprivation recedes once the sensation of hearing is partially restored through a cochlear implant. The current study used electroencephalography source localization to examine cross-modal reorganization in the a...
متن کاملVisual Cross-Modal Re-Organization in Children with Cochlear Implants
BACKGROUND Visual cross-modal re-organization is a neurophysiological process that occurs in deafness. The intact sensory modality of vision recruits cortical areas from the deprived sensory modality of audition. Such compensatory plasticity is documented in deaf adults and animals, and is related to deficits in speech perception performance in cochlear-implanted adults. However, it is unclear ...
متن کاملAuditory and Visual Electrophysiology of Deaf Children with Cochlear Implants: Implications for Cross-modal Plasticity
Deaf children who receive a cochlear implant early in life and engage in intensive oral/aural therapy often make great strides in spoken language acquisition. However, despite clinicians' best efforts, there is a great deal of variability in language outcomes. One concern is that cortical regions which normally support auditory processing may become reorganized for visual function, leaving fewe...
متن کاملCortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy
Evidence from functional neuroimaging studies suggests that the auditory cortex can become more responsive to visual and somatosensory stimulation following deafness, and that this occurs predominately in the right hemisphere. Extensive cross-modal plasticity in prospective cochlear implant recipients is correlated with poor speech outcomes following implantation, highlighting the potential imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- MEDICC review
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2012